Multiple Metal-Carbon Bonds. 6.¹ The Reaction of Niobium and Tantalum Neopentylidene Complexes with Simple Olefins: a Route to Metallocyclopentanes

Sir:

Primary alkylidene complexes² have been postulated as active intermediates in several important transition metal catalyzed reactions such as olefin metathesis,³ rearrangement of strained hydrocarbons,⁴ and formation of cyclopropanes from diazoalkanes and olefins.⁵ However, only Nb and Ta primary alkylidene complexes have so far been isolated and characterized. These are proving to be invaluable in probing the question of how *nucleophilic*⁶ alkylidenes react with typical functional groups. We wish to report here that nucleophilic nonpentylidene complexes of Nb and Ta react rapidly with primary olefins to give a new olefin formed by rearrangement of a postulated intermediate metallocyclo*butane* complex. The isolable metal-containing product in several instances is a metallocyclo*pentane* complex formed by cycloaddition of two olefins to the metal-containing fragment which remains.

The reaction between $M(CH_2CMe_3)_2Cl_3^{8a}$ (M = Nb or Ta) and TlC5H5 at 25 °C in toluene gives neopentane and $M(\eta^{5}-C_{5}H_{5})Cl_{2}(CHCMe_{3})^{8b}$ (1, M = Ta; 2, M = Nb). The intermediate, presumably $M(\eta^5-C_5H_5)Cl_2(CH_2CMe_3)_2$, evidently "decomposes" by α -hydrogen atom abstraction.⁷ The residue obtained after filtering off TlCl was recrystallized from pentane/toluene (5:1) at -40 °C to give 1 in 70% yield (Calcd for TaC₁₀H₁₅Cl₂: C, 31.03; H, 3.90; Cl, 18.32. Found: C, 31.17; H, 4.05; Cl, 18.30; Bernhardt), or 2 in 15% yield (Calcd for NbC10H15Cl2: C, 40.17; H, 5.05; Cl, 23.71. Found: C, 40.19; H, 5.16; Cl, 23.66; Bernhardt). The ¹H and ¹³C NMR spectra for 1 and 2 are entirely consistent with formulation as neopentylidene complexes.⁹ A molecular weight measurement suggests 1 is a monomer in benzene.¹⁰ 1 is thermally stable (unchanged after 3 h at 150 °C in benzene in a sealed tube or sublimation at 1 μ m and 65 °C), but reacts readily with moist air. As in other tantalum alkylidene complexes⁶ the neopentylidene α -carbon atom is believed to be nucleophilic, e.g., 1 reacts with HCl at -78 °C in toluene to give $Ta(\eta^5)$ C₅H₅)Cl₃(CH₂CMe₃) in 95% isolated yield.¹¹ Alkylidene complexes of this type are important in two respects: (i) the 14 valence electron count should in theory allow an incoming ligand to coordinate to the metal; and (ii) the only obviously reactive, or at least potentially the most reactive ligand, is the neopentylidene ligand.

Ethylene (45 psi) reacts readily with 1 dissolved in pentane at 25 °C. The red color first deepens then lightens to velloworange in 3-5 min as orange crystals fall from solution (vide infra). The organic product of this reaction is almost exclusively 4,4-dimethyl-1-pentene (Table I). The yield of 3,3dimethyl-1-butene, the metathesis product, is insignificant and the yield of *tert*-butylcyclopropane must be $\leq 5\%$. The major organic product of the reaction of 1 with propylene, styrene, and cis-3-hexene results from an analogous but selective "insertion" of neopentylidene into an olefinic C-H bond (cf. propylene and styrene). A qualitative comparison suggests that the rate of reaction of these four olefins with 1 decreases in the order ethylene > propylene \geq styrene \gg *cis*-3-hexene. The fact that β , β -dimethylstyrene did not react appreciably under conditions where cis-3-hexene was consumed is consistent with this general trend.¹² The reaction of **2** with ethylene also gives 4,4-dimethyl-1-pentene, but in lower yield.

We believe that the olefin adds to the metal-neopentylidene double bond to give one metallocyclobutane intermediate¹³ selectively (e.g., **3**, **4**, and **5**, Scheme I), the one which is consistent with the neopentylidene ligand's nucleophilic properties.¹⁴ A specific hydrogen atom shift from C_{β} to the *tert*butyl-substituted C_{α} in **3**, **4**, and **5** is one means of generating

Table I. Products of the Reaction of 1 and 2 with Olefins^a

Compd	Olefin	Products
1	$CH_2 = CH_2$ (45 psi)	$(91 \pm 3\%)^{b,c} + (\sim 3\%)^{c}$
		$+\sqrt{-1}(\sim 0\%)^{c}$ × (<0.04%) ^c
1	$CH_3CH=CH_2$ (45 psi)	$(86 \pm 6\%)^{b,c}$
1	PhCH= CH_2 (3 mol in C ₆ D ₆)	$\stackrel{\text{Ph}}{\searrow} (95 \pm 10\%)^{d,e}$
1	cis-3-Hexene (neat, 120 °C)	(or isomers; $> 50\%$)
2	$CH_2 = CH_2$ (45 psi)	$(62 \pm 3\%)^{b,c}$

^{*a*} Solvent = mesitylene, pentane, or C_6D_6 ; T = 25 °C unless otherwise noted. Minor product yields were measured only for the first example. ^{*b*} Identified by GLC and ¹H NMR comparison (in C_6D_6) with an authentic sample. ^{*c*} GLC yield based on internal standard (a saturated hydrocarbon). ^{*d*} Proposal based on ¹H NMR comparison (in C_6D_6) with the spectrum of *trans*-propenylbenzene. ^{*e*} Yield determined in C_6D_6 by ¹H NMR vs. internal cyclohexane standard. ^{*j*} The mass and ¹H NMR spectra are consistent with the major olefin product being one of this type.

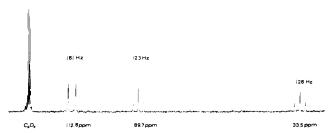
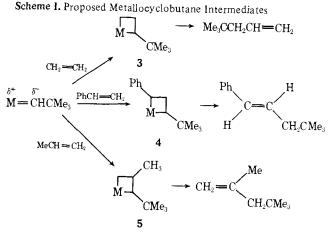



Figure 1. The 67.89-MHz gated decoupled ^{13}C spectrum of 6 in C_6D_6 at 25 °C.

the observed product.¹⁵ Note that (i) the same factors which determine how the olefin adds to the neopentylidene ligand¹⁴ apparently govern the way in which an olefin adds to a postulated tungsten alkylidene complex in one type of olefin metathesis system;¹⁶ and (ii) the rearrangement observed here is the third most obvious fate of a metallocyclobutane complex. The only other example of a reaction between an alkylidene complex [(CO)₅W=C(C₆H₄R)₂, R = H or CH₃] and various nonfunctionalized olefins gave metathesis and cyclopropane products;^{12b,17} no olefin products resulting from rearrangement of the intermediate metallocyclobutane complex were reported.¹⁸

The organometallic product of the reaction of 1 with ethylene (vide supra) can be isolated in 95% yield; it has the empirical formula TaC₉H₁₃Cl₂ (Calcd for Ta₉H₁₃Cl₂: C, 28.98; H, 3.51; Cl, 19.01. Found: C, 29.03; H, 3.63; Cl, 19.17; Bernhardt). Yellow-orange crystals of 6 darken under nitrogen in one day at 25 °C (more slowly under 600 mm of C_2H_4), but keep indefinitely at -30 °C.

The $-40 \,^{\circ}\text{C} \, 60 \,^{\circ}\text{MHz}$ [|]H NMR spectrum of **6** in toluene- d_8 under 1 atm of ethylene shows a η^5 -C₅H₅ resonance at τ 4.60, a small peak for free, dissolved ethylene at τ 4.75, and two broad peaks (ca. 20-Hz wide) and two sharper peaks (ca. 10-Hz wide) at τ 6.35, 7.15, 7.95, and 8.10, respectively, of approximately equal area, and a total area of eight protons vs. η^{5} -C₅H₅. On warming to 40 °C, the broad pair coalesces with the sharper pair to give two peaks at τ 7.25 and 7.60; the peak for free ethylene remains sharp and does not shift appreciably.

The 67.89-MHz gated decoupled ${}^{13}C$ spectrum of 6 in C₆D₆ at 25 °C is shown in Figure 1. The two triplet resonances are separated by about 60 ppm. This result seems inconsistent with their being due to two types of ethylene carbon atoms, since all known chemical shifts for ethylene carbon atoms in widely differing neutral complexes lie in the range 20-60 ppm downfield of Me₄Si.¹⁹ Secondly, the ${}^{1}J_{CH}$ coupling constants for the two types of carbon atoms are those expected for sp³ hybridized carbon atoms, not coordinated ethylene.²⁰ Together, these facts suggest that ground state 6 is actually a metallocyclopentane complex. Accordingly, 6 reacts with Br₂ in diethyl ether at -78 °C to give 1,4-dibromobutane (0.83 per $Ta)^{24}$ and 1,4-dibromoethane (0.18 per Ta),²⁴ and with CO (3 atm) in diethyl ether at -78 °C (followed by warming to 25 °C) to give cyclopentanone (0.50 per Ta)²⁴ and nearly insoluble TaCp(η^{x} -C₅H₅)Cl₂(CO)₂^{8b} (0.55 per Ta; ν_{CO} (cm⁻¹) = 2045 s, 1962 s). These results unambiguously demonstrate that a metallocyclopentane complex can be formed from two simple olefins.²⁵ The variable temperature ¹H NMR results noted above, however, need not be ascribed to the reverse of that process (followed by rotation of each ethylene about the metal-ethylene bond axis),²⁹ since pseudo-rotation in "fivecoordinate" $Cl_2(\eta^5 - C_5H_5)TaCH_2CH_2CH_2CH_2$ would yield a result indistinguishable by ¹H NMR.

The organometallic product (7) of the reaction of 1 with propylene at 0 °C is also an isolable metallocycle analogous to 6. Full details of the stereochemistry, variable temperature ¹H and ¹³C NMR spectra, and role in catalytic processes of 7, 6, and other isolable metallocycles prepared from olefins will be reported separately.

Acknowledgment. We thank the Francis Bitter National Magnet Laboratory for use of their ¹³C NMR facilities and the National Science Foundation for support (CHE76-07410).

References and Notes

- (1) Part 5. R. R. Schrock, J. Am. Chem. Soc., 98, 5399 (1976).
- (2) Alkylidene complexes are defined as ''carbene'' complexes which contain no heteroatoms such as O, N, or S. Primary alkylidenes are monosubstituted and secondary alkylidene disubstituted methylene complexes
- (3) (a) R. J. Haines and G. J. Leigh, Chem. Soc. Rev., 4, 155 (1975); (b) N. Calderon, E. A. Ofstead, and W. A. Judy, Angew. Chem., Int. Ed. Engl., 15, 401 (1976).
- K. C. Bishop III, *Chem. Rev.*, 76, 461 (1976). W. Kirmse, "Carbene Chemistry", Vol. 1, Academic Press, New York and (5) W. Kirmse, London, 1971
- (6) Nucleophilicity has been unambiguously demonstrated in one case⁷ and is implied by reactions in others.¹ (7) R. R. Schrock, *J. Am. Chem. Soc.*, **9**7, 6577 (1975).
- (a) (a) TaCH₂OMe₃)₂Cl₃, a yellow-orange liquid at 25 °C, can be prepared by slowly adding Zn(CH₂OMe₃)₂ to TaCl₅ (5% excess) in toluene at 25 °C. It may be used in situ or isolated by removing toluene in vacuo and recrystallizing it from pentane at -40 °C [¹H NMR (τ , C₆D₆): 7.08 (s, CH₂), 8.88 (s. CMe₃)]. Orange Nb(CH₂CMe₃)₂Cl₃ (also a liquid at 25 °C) can be

prepared by slowly adding Zn(CH2CMe3)2 to 2 mol of sublimed NbCl5 in pentane. It decomposes readily in concentrated solutions (toluene or pentane) at 25 °C [¹H NMR (τ , C₆H₆): 6.20 (br s, CH₂); 8.80 (s, CM₂)]. (b) Until proven otherwise, we will assume that all complexes contain η In only one example so far, Ta(C5H5)Cl2(CO)2 (see text), does infrared ev-Idence suggest that an η^1 -C₅H₅ formulation in the solid state may be more correct.

- correct. (9) (a) 1: 60-MHz ¹H NMR (τ , C₆D₆) 3.62 (s, 1, ==CH-), 4.35 (s, 5, η^{5} -C₅H₅), 9.05 (s, 9, CMe₃); 22.63-MHz ¹³C NMR (ppm downfield from Me₄SI, C₆D₆, gated decoupled) 246 (d, C_a, ¹J_{CH} = 84 Hz), 107 (d, η^{5} -C₅H₅, ¹J_{CH} = 180 Hz), 48 (s, C_β), 33 (q, C_γ, ¹J_{CH} = 126 Hz). (b) **2**: 60-MHz ¹H NMR (τ , C₆D₆) 2.75 (s, 1, ==CH-), 4.20 (s, 5, η^{5} -C₅H₅), 9.05 (s, 9, CMe₃). (10) Only one measurement was made: calcd 388; found 494. The high result
- may indicate some dimerization through chlorine atoms.
- (11) This complex can be prepared by reacting Ta(CH2CMe3)Cl4 [from excess TaCl₅ and Zn(CH₂CMe₃)₂ in toluene after 3 days.¹ H NMR (τ , C₆D₆) 6.58 (s, 2, CH₂), 8.98 (s, 9, CMe₃)] with TlC₅H₅ in toluene at 25 °C [¹H NMR (τ , C₆D₆) 4.34 (s, 5, C₅H₅), 8.12 (s, 2, CH₂), 8.61 (s, 9, CMe₃)]. (12) (a) Casey^{12b} found a similar relative reactivity of nonfunctionalized olefins with WCOV (CH₂) (bal - 2 CH₂).
- with W(CO)₅(Ctol₂) [tol = p-C₆H₄CH₃]. Steric factors alone could be largely responsible for the observed trend in each case. (b) C. P. Casey, H. E. Tuinstra, and M. C. Saeman, J. Am. Chem. Soc., 98, 608 (1976)
- (13) (a) So far, we have not found conditions which would allow us to isolate and characterize these complexes. Stable metallocyclobutane complexes are known for Pt^{13b} and W.^{13c,d} Note that decomposition of each in the solid state gives some of the olefin expected by a process analogous to that described here. Brown^{13e} has also noted that cyclopropane reacts with $[Pt(C_2H_4(Cl_2)_2 \text{ to give } [Pt(propylene)Cl_2]_2 \text{ in } CH_2Cl_2 \text{ (b) } P. W. Hall, R. J. Charles and the state of the state$ Puddephatt, and C. F. H. Tipper, J. Organomet. Chem., **84**, 407 (1975), and references cited therein; (c) M. Ephritikhine, M. L. H. Green, and R. E. MacKenzie, J. Chem. Soc., Chem. Commun., 619 (1976); (d) M. Ephritikhine and M. L. H. Green, J. Chem. Soc., Chem. Commun., 926 (1976); (e) D. B. Brown, J. Organomet. Chem., **24**, 787 (1970).
- (14) Of course we do not yet know exactly how the proposed metallocyclobutane complex forms, but an important consideration must be a polarization (almost certainly in a transition state) which places some positive charge on the metal and some negative charge on one olefinic carbon atom (e.g., the carbon next to the phenyl group in the case of styrene and the unsubstituted carbon in the case of propylene) as a single bond forms between the neopentylidene α -carbon atom and the second olefinic carbon atom.
- (15) If this process proceeds via a σ or π -allyl hydride complex, then it is a form of *β*-hydride elimination. An intriguing possibility which cannot be excluded, however, is a form of α -hydrogen atom abstraction⁷ to give a new alkylidene complex (e.g., M=CHCH2CH2CMe3 in the case of ethylene) followed by a now possibly more facile β -hydride shift to the alkylidene α -carbon atom.
- (16) P. G. Gassman and T. H. Johnson, J. Am. Chem. Soc., 99, 622 (1977)
- (17) (a) Note that C_e in (CO)₅W=CPh₂ is believed to be electrophilic. (b) C. P. Casey and T. J. Burkhardt, *J. Am. Chem. Soc.*, **96**, 7808 (1974); (c) C. P. Dubhardt, *D. Am. Chem. Soc.*, **96**, 7808 (1974); Casey, T. J. Burkhardt, C. A. Bunnell, and J. C. Calabrese, ibid., in press
- (18) Since the observed products do not account for all the alkylidene initially present, such products might still be found in the reaction mixtures
- (19) (a) Chemical shifts are known for five neutral compounds: (PPh₃)₂Pt(C₂H₄),
 (19) (a) Chemical shifts are known for five neutral compounds: (PPh₃)₂Pt(C₂H₄),
 (19) (a) Chemical shifts are known for five neutral compounds: (PPh₃)₂Pt(C₂H₄),
 (29) (a) Chemical shifts are known for five neutral compounds: (Ph₃)₂Pt(C₂H₄),
 (20) The (C₂H₄)₂(dmpe)₂, 32 and 35;^{19c} and Ta(η⁵-C₅H₅)₂(CH₃)(C₂H₄),
 (19) M. H. Chisholm and S. Godleski, *Prog. Inorg. Chem.*, 20, 299 (1976); (c) R. R. Schrock, *J. Organomet. Chem.*, 121, 373 (1976).
 (20) The 1/2 complexes the starting method and heavy location and starting method and heavy location.
- (20) The ¹J_C coupling constant in all tantalum methyl and benzyl complexes in hand lie in the range expected²¹ for sp³ hybridized carbon atoms, 125 \pm 3 Hz. In contrast, the CH coupling constant in free ethylene²¹ is 156 Hz and in ethylene in Rh($\eta^5-C_5H_5)(C_2H_4)_2^{22}$ is 160 Hz, while in Ta($\eta^5-C_5H_5)$ $_2(C_2H_4)(CH_3)^{23}$ it is 150 Hz.
- (21) D. M. Graham and C. E. Holloway, Can. J. Chem., 41, 2114 (1963).
- (22) G. M. Bodner, B. N. Storhoff, D. Doddrell, and L. J. Todd, Chem. Commun., 1530 (1970).
- (23) C. D. Wood and R. R. Schrock, unpublished results.
- (24) By GLC vs. an internal standard.
- (25) Unsubstituted metallocyclopentane complexes have been prepared by reacting 1,4-dilithiobutane with metal dihalides.^{26,27} Formation of wellcharacterized metallocyclopentane complexes only from more reactive olefins like norbornadiene has been observed in the past.²⁶ Results in one report,26 however, could be interpreted as evidence for formation of a metallocyclopentane complex from ethylene.
- (26) J. X. McDermott, M. E. Wilson, and G. M. Whitesides, J. Am. Chem. Soc., 98, 6529 (1976)
- (27) (a) G. Biefeld, H. A. Eick, and R. H. Grubbs, Inorg. Chem., 12, 2166 (1973);
 (b) R. H. Grubbs, D. C. Carr, and P. L. Burk in "Organotransition Metal Chemistry", Y. Ishii and M. Tsutsui, Ed., Plenum Press, New York, N.Y., 1975
- (28) A. R. Fraser, P. H. Bird, S. A. Bezman, J. R. Shapley, R. White, and J. A. Osborn, J. Am. Chem. Soc., 95, 597 (1973).
- See R. Cramer, J. B. Kline, and J. D. Roberts [*J. Am. Chem. Soc.*, **91**, 2519 (1969)] for a Rh example, $Rh(\eta^5-C_5H_5)(C_2H_4)_2$. (29)
- (30) National Science Foundation Predoctoral Fellow, 1975-1978. (31) Alfred P. Sloan Fellow, 1976-1978.

S. J. McLain,³⁰ C. D. Wood, R. R. Schrock*³¹

Department of Chemistry, 6-331 Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received November 12, 1976